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Anisotropic diffusion processes emerge in various fields such as transport in biological tissue and
diffusion in liquid crystals. In such systems, the motion is described by a diffusion tensor. For a
proper characterization of processes with more than one diffusion coefficient, an average description
by the mean squared displacement is often not sufficient. Hence, in this paper, we use the distribution
of diffusivities to study diffusion in a homogeneous anisotropic environment. We derive analytical
expressions of the distribution and relate its properties to an anisotropy measure based on the mean
diffusivity and the asymptotic decay of the distribution. Both quantities are easy to determine from
experimental data and reveal the existence of more than one diffusion coefficient, which allows the
distinction between isotropic and anisotropic processes. We further discuss the influence on the anal-
ysis of projected trajectories, which are typically accessible in experiments. For the experimentally
most relevant cases of two- and three-dimensional anisotropic diffusion, we derive specific expres-
sions, determine the diffusion tensor, characterize the anisotropy, and demonstrate the applicability
for simulated trajectories. © 2013 AIP Publishing LLC. [http://dx.doi.org/10.1063/1.4828860]

I. INTRODUCTION

The random motion of suspended particles in a fluid,
which is usually referred to as Brownian motion, is an
old but still fascinating phenomenon. Especially, when
inhomogeneous1–3 or anisotropic media4–7 are involved,
many questions are still open. From the theoretical point
of view, much work has been done8 to predict the statis-
tical properties of the trajectories of such particles using
stochastic methods. On the other side, the development of
experiments only recently allows obtaining the paths of indi-
vidual molecules and particles. Especially the observation of
two-dimensional trajectories using video-microscopic meth-
ods, for instance, by single-particle tracking (SPT), is already
successfully applied to biological systems9, 10 or to under-
stand the microrheological properties of complex liquids.11, 12

But also the observation of three-dimensional paths becomes
feasible.13–15 The statistical analysis of these trajectories is
usually accomplished by measuring the mean square displace-
ment (msd) in order to get the diffusion coefficients for the
matching theoretical description. However, in the anisotropic
case the diffusive properties depend on the direction of mo-
tion and are described by a diffusion tensor. In such sys-
tems, the analysis of msd’s turned out to be not sufficient
to determine the anisotropy and extract the values of the dif-
fusion coefficients.16–18 For similar reasons, we already in-
troduced the distribution of single-particle diffusivities as an
advanced method to analyze stochastic motion in heteroge-
neous systems19 involving more than one diffusion coeffi-
cient. Hence, we distinguish between diffusivities as fluc-
tuating quantities and diffusion coefficients as mean values.

a)Electronic mail: radons@physik.tu-chemnitz.de

An integrated version of the distribution of diffusivities is al-
ready successfully applied to analyze diffusion in inhomoge-
neous media,20 spectral diffusion,21, 22 and even anisotropic
media.4–6 It should be noted that this distribution is closely
related to the displacement distribution.23, 24 However, the
distribution of diffusivities is superior since it is station-
ary for time-homogeneous diffusion processes. Thus, exper-
iments conducted on different time scales can be compared
easily. Furthermore, this new method was extended to the
distribution of generalized diffusivities to characterize data
from anomalous diffusion processes, which offers, for in-
stance, a deeper understanding of weak ergodicity breaking.25

For anomalous diffusion, our method is an efficient alterna-
tive to other techniques26 for distinguishing between differ-
ent anomalous diffusion processes. Here, we want to estab-
lish an efficient method to distinguish between different nor-
mal diffusion processes involving more than one diffusion
coefficient.

In the current article, we show the applicability of the
distribution of diffusivities to analyze trajectories of homo-
geneous anisotropic Brownian motion. Anisotropic processes
are relevant in many different applications such as diffu-
sion in porous media,27, 28 in liquid crystals,5, 29 or in biolog-
ical tissues,30–32 where the anisotropy originates, e.g., from
aligned filaments in cells.33, 34 We present the properties of
the distribution of diffusivities as well as their relations to es-
tablished quantities. In order to assess the parameters of the
process, we calculate the characteristic function, cumulants,
and moments of the distribution. From these moments, the
diffusion coefficients can be determined, which characterize
the mobility of the diffusing molecules or the viscosity of the
surrounding medium. For the asymptotic decay of the distri-
bution of diffusivities, we derive a general expression, which
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involves the largest diffusion coefficient of the system. In con-
junction with the mean diffusion coefficient of the system, the
asymptotic decay enables a data-based distinction between
isotropic and anisotropic processes. Based on these quanti-
ties, we provide a measure to characterize the anisotropy of
the process from the analysis of SPT data. Such a quantitative
measure provides valuable information about the dimension-
ality of the process and characterizes the aspect ratio of the
diffusing molecules or of the molecules in the surrounding
medium. Since in experiments the reconstruction of the com-
plete diffusion tensor is of great interest, we extend our con-
cept to tensorial diffusivities, which offer a simple method to
determine the entries of the tensor.

Due to restrictions in SPT experiments, the complete tra-
jectory is often not accessible.4, 23 Hence, we investigate the
influence on the distribution of diffusivities and the detection
of the anisotropy if only projections of the actual trajectory
are observed. Even in such cases it is possible to estimate
bounds of the diffusion coefficients from the given projections
of the diffusion tensor. Since especially two-dimensional and
three-dimensional diffusion processes have a high relevance
in experiments, we apply our considerations to these systems.
For homogeneous anisotropic diffusion in two dimensions, an
analytical expression of the distribution of diffusivities exists
and its moments can be related to the diffusion coefficients,
which enter the anisotropy measure. Moreover, we explain the
details of reconstructing the diffusion tensor from the tenso-
rial diffusivities as well as from projections of the trajectory.
Three-dimensional processes are investigated analogously al-
though a closed-form expression of the distribution of diffu-
sivities does not exist. Additionally, we deal with anisotropic
processes where one diffusion coefficient is degenerated cor-
responding to diffusion of uniaxial molecules typical for liq-
uid crystalline systems.35

The paper is organized as follows. In Sec. II, we briefly
recall the theoretical principles of anisotropic Brownian mo-
tion based on the diffusion tensor and introduce the distri-
bution of single-particle diffusivities, its properties and rela-
tions to established quantities. To apply our new concepts to
N-dimensional homogeneous anisotropic diffusion processes,
we provide in Sec. III a general expression for the distri-
bution of diffusivities. We demonstrate how to distinguish
between isotropic and anisotropic processes and explain the
reconstruction of the diffusion tensor. Since in experiments
typically a projection of the motion is observed, we charac-
terize the distribution of diffusivities of the projected trajec-
tories. To illustrate our presented theoretical considerations,
in Sec. V, we apply our results comprehensively to specific
systems of anisotropic diffusion which are typical for exper-
imental setups. We substantiate the applicability of our find-
ings by analyzing data from simulated anisotropic diffusion
processes.

II. DEFINITIONS
A. Anisotropic diffusion

A N-dimensional anisotropic Brownian motion is com-
pletely defined by its propagator36

p(x, t |x′, t ′) = (2π )−
N
2√

[2(t − t ′)]N det D

× exp

[
−1

2

1

2(t − t ′)
(x − x′)TD−1(x − x′)

]
,

(1)

where D = OTD̂O is the positive definite and symmetric dif-
fusion tensor, D̂ = diag(D1,D2, . . . ,DN ) denotes its diago-
nalized form with the diffusion coefficients Di belonging to
the principal axes, and O is an orthogonal matrix which de-
scribes the orientation of the principal axes relative to the
frame of reference.

For the simulation of such processes, an alternative de-
scription exists, where the trajectories are evolved by the
Langevin equation

dx
dt

=
√

2Dξ (t) (2)

with
√

D = OT
√

D̂O and
√

D̂ = diag(
√

D1,
√

D2, . . . ,√
DN ). The vector ξ (t) = [ξ1(t), . . . , ξN (t)]T denotes

Gaussian white noise in N dimensions with 〈ξ (t)〉 = 0 and
〈ξ i(t)ξ j(t′)〉 = δijδ(t − t′) ∀ i, j ∈ {1, 2, . . . , N}.

Assuming time-translation invariance Eq. (1) is simpli-
fied to the probability density p(x′ + r, τ |x′) of displace-
ments r = x − x′ by substituting τ = t − t′. This conditional
probability density is averaged by the equilibrium distribu-
tion p0(x′) given by the Boltzmann distribution to obtain the
ensemble-averaged probability density

p(r, τ ) =
∫

dNx′ p(x′ + r, τ |x′)p0(x′)

= (2π )−
N
2√

det �
exp

(
−1

2
rT�−1r

)
(3)

of a displacement r = (r1, . . . , rN )T in the time interval τ .
Thus, p(r, τ ) is a N-dimensional Gaussian distribution with
zero mean and covariance tensor � = 2τD.

Expressions with dimensionality N > 3 may be interest-
ing for simultaneous observation of d particles correspond-
ing to an extended many-particle state space x(x1, . . . , xd ).
The simplest case is the two-dimensional motion of two non-
interacting particles with different diffusion coefficients D1

and D2. From the sequence of simultaneous positions, we ob-
tain a four-dimensional displacement vector r and the diffu-
sion tensor D̂ = diag(D1,D1,D2,D2). This is a limiting case
of a more interesting situation where particles interact, e.g.,
head and tail of a polymer, where the distance between both
positions depends on the conformation of the polymer.

B. Distribution of diffusivities

By observing a trajectory x(t) of an arbitrary stochastic
process in N dimensions, individual displacements during a
given time lag τ can simply be measured for a certain particle.
Moreover, it is natural to relate each displacement to a single-
particle diffusivity

Dt (τ ) = [x(t + τ ) − x(t)]2

2Nτ
. (4)
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This simple transformation of displacements to diffusivities
offers the advantage to compare these quantities for differ-
ent experimental setups and different τ . Since for a fixed
time lag τ the single-particle diffusivity is fluctuating along
a trajectory, an important quantity is given by the probability
density p(D, τ ). Therefore, the distribution of single-particle
diffusivities19 is defined as

p(D, τ ) = 〈δ[D − Dt (τ )]〉, (5)

where 〈· · · 〉 either denotes a time average 〈· · · 〉
= limT →∞ 1/T

∫ T

0 · · · dt , which is typically accessible
by SPT, or an ensemble average as measured by other
experimental methods, such as nuclear magnetic resonance.37

For ergodic systems, as considered here, time average and
ensemble average coincide. Since the displacements are
rescaled by τ , one can easily compare the distributions of
processes observed on different time scales. It should be
noted that other definitions of diffusivity distributions exist in
the literature.38

For time-homogeneous systems, i.e., when the distribu-
tion of displacements p(r, τ ) is independent of t, Eq. (5) can
be rewritten as

p(D, τ ) =
∫

dNr δ

(
D − r2

2Nτ

)
p(r, τ ) (6)

transforming p(r, τ ) into the distribution of diffusivities.
The literature discusses the influence of correlations be-

tween segments of length τ defining the displacements for the
determination of the mean squared displacement.39, 40 Specif-
ically, the displacements with time lag τ are correlated if the
difference δ between the initial times of the displacements is
smaller than τ and vanishes only if the shift δ of the segments
is larger than τ . These correlations can be calculated explic-
itly for the case of simple Brownian motion for which our dis-
tribution of diffusivities is independent of the time lag. This
means that our distribution of diffusivities is not affected by
the relation of time lag τ and shift δ of the segments. This
implies that calculating the distribution p(D, τ ) from over-
lapping or non-overlapping segments yields the same result.
Whereas for homogeneous systems the distribution is station-
ary and independent of τ , which means that the first moment
or mean D is stationary as well, for inhomogeneous systems
the distribution and its moments become stationary only for
large τ . Thus, we encourage experimentalist to vary τ in their
measurements to detect inhomogeneities.

For data from SPT experiments, displacements from
a trajectory are transformed to diffusivities according to
Eq. (4) and the distribution of diffusivities is obtained by bin-
ning these diffusivities into a normalized histogram according
to Eq. (5). Due to the nature of experiments, the number of
displacements may be small. As a consequence, this leads to
fluctuations in the distribution which are related to the insuf-
ficient statistics of rare displacements. However, adapting the
bin width of the histogram may reduce these fluctuations.

For homogeneous isotropic processes in N dimensions,
the msd grows linearly with τ , since it obeys the well-known
Einstein relation 〈r2(τ )〉 = 2NDcτ , where Dc is the diffusion
coefficient of the process. Due to the transformation of dis-
placements to diffusivities by Eq. (4) the linear dependence

on τ is removed. Hence, the corresponding distribution of
diffusivities becomes stationary and comprises single-particle
diffusivities fluctuating around Dc. For N-dimensional homo-
geneous isotropic processes, the distribution of diffusivities

pNd
Dc

(D) =
(

N

2Dc

) N
2 D

N
2 −1

�(N
2 )

exp

(
− N

2Dc

D

)
(7)

is obtained, where �(x) denotes the gamma function.
Equation (7) is identified as a χ2-distribution of N degrees
of freedom and results directly from the sum of the squares of
N independent and identically distributed Gaussian random
variables with variance Dc/N and vanishing mean.41 Since
these variables are the squared and rescaled components of
the displacement vector r2

i (τ )/(2Nτ ), their sum corresponds
to the diffusivity.

For inhomogeneous isotropic diffusion processes which
are ergodic, Eq. (7) provides a further useful application.
Since for normal diffusion in N dimensions the Einstein re-
lation holds for large τ , p(D, τ ) converges to the stationary
distribution given by Eq. (7). In this case, Dc is the mean dif-
fusion coefficient of the process.

C. Moments

The distribution of diffusivities is fully characterized by
its corresponding moments

Mm(τ ) = 〈D(τ )m〉 =
∞∫

0

dD Dm p(D, τ ). (8)

It should be noted that the first moment for large τ is known
as the mean diffusion coefficient, which is obtained by a
well-defined integration. This is in contrast to msd measure-
ments, where the mean diffusion coefficient is determined
by a numerical fit to the slope of the msd. If the number
of displacements obtained in the experiment is small, the
distribution may have strong fluctuations due to insufficient
statistics. However, the most interesting low-order moments
of the distribution can also be calculated directly from the
diffusivities independent of the bin width of the distribution,
which yields more reliable values of the moments, even for
small samples.

By inserting Eq. (6) into Eq. (8), the integration over D
yields as a result the moments

Mm(τ ) = 1

(2Nτ )m

∫
dNr r2mp(r, τ )

= (2Nτ )−m〈r2m〉. (9)

They are directly related to the moments of the distribution
of displacements and, thus, to the moments of the propagator
p(x, t |x′, t ′).
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III. PROPERTIES OF THE DISTRIBUTION OF
DIFFUSIVITIES FOR HOMOGENEOUS ANISOTROPIC
BROWNIAN MOTION

A. Distribution of diffusivities

For homogeneous anisotropic diffusion in N dimensions,
where p(r, τ ) is a Gaussian distribution with zero mean given
by Eq. (3), the computation of the distribution of diffusivi-
ties, its moments, or its characteristic function is simplified
by reformulating the integral of Eq. (6). Applying the coordi-

nate transformation r = Qq with Q = √
2τOT

√
D̂ gives for

the distribution of diffusivities

pNd
D̂

(D) =
∫

dq1 · · ·
∫

dqN

× δ

(
D − 1

N

N∑
i=1

Diq
2
i

)
N∏

j=1

p(0,1)(qj ), (10)

where p(0,1)(qj ) = 1√
2π

exp(− 1
2q2

j ). Thus, the distribution of
diffusivities is calculated by integration over independent
standard normally distributed variables with zero mean and
unit variance. Since the msd for homogeneous anisotropic dif-
fusion again grows linearly as in the homogeneous isotropic
case, the τ dependency in the distribution of diffusivities
vanishes.

By obtaining the distribution of diffusivities, for instance,
from displacements along a single trajectory, information
about the orientation of the diffusion tensor is lost. However,
all directions contribute to the distribution and, thus, it still
contains information about the diffusion coefficients corre-
sponding to the principal axes, i.e., the eigenvalues of D.

B. Characteristic function, cumulants, and moments

With the transformation Eq. (10), the moments and the
characteristic function of the distribution of diffusivities of
anisotropic Brownian motion can be calculated. For the mo-
ments, given by Eq. (8), this yields

MNd
m = 1

Nm

∫
dq1 · · ·

∫
dqN

(
N∑

i=1

Diq
2
i

)m N∏
j=1

p(0,1)(qj ).

(11)
So, for instance, the first moment of the distribution of diffu-
sivities is given by

MNd
1 = 1

N

N∑
i=1

Di = 〈D(τ )〉 , (12)

which is simply the arithmetic mean of all the diffusion co-
efficients Di and coincides with the slope of the msd. For
higher moments of the distribution of diffusivities, it is easier
to calculate its characteristic function GNd

D̂
(k) = 〈exp(ikD)〉

= ∫∞
0 dD exp(ikD)pNd

D̂
(D) by substituting pNd

D̂
(D) from

Eq. (10) and performing the Fourier transform to obtain

GNd
D̂

(k) =
N∏

j=1

∫
dqj exp

(
ik

Djq
2
j

N

)
p(0,1)(qj )

=
N∏

j=1

(
1 − ik

2Dj

N

)− 1
2

. (13)

From the characteristic function Eq. (13), the cumulants
of the distribution pNd

D̂
(D) are obtained as

κm = 1

im
∂m ln GNd

D̂
(k)

∂km

∣∣∣∣∣
k=0

= 2m−1(m − 1)!

Nm

N∑
i=1

Dm
i (14)

for m > 0. The moments are recursively related to the
cumulants by

Mm =
m−1∑
k=0

(
m − 1

k

)
κm−kMk (15)

with initial value M0 = 1.42

It should be noted that the characteristic function
in Eq. (13) is a product of different characteristic func-
tions in Fourier space. Hence, the distribution of diffusiv-
ities of a N-dimensional anisotropic system is determined
by inverse Fourier transform of the characteristic func-
tion pNd

D̂
(D) = F−1[GNd

D̂
(k)] = F−1[

∏N
i=1 G1d

Di/N
(k)], where

G1d
Di/N

(k) = F[p1d
Di/N

(D)] is the Fourier transform of
the one-dimensional distribution of diffusivities p1d

Di/N
(D)

= 1/
√

2πDDi/N exp(−ND/(2Di)) with diffusion coeffi-
cient Di/N. Correspondingly, the distribution of diffusivities
of a N-dimensional anisotropic system is obtained by convo-
lution of N one-dimensional distributions of diffusivities

pNd
D̂

(D) = {
p1d

D1/N
∗ p1d

D2/N
∗ · · · ∗ p1d

DN/N

}
(D)

=
∞∫

0

d
1 · · ·
∞∫

0

d
N

× δ

(
D −

N∑
i=1


i

)
N∏

j=1

p1d
Dj /N

(
j ), (16)

which follows directly from Eq. (10). Thus, with Eqs. (10),
(13), and (16), we provide three equivalent expressions to de-
termine the distribution of diffusivities in terms of the eigen-
values Di of D. Depending on the considered experimental
system, each representation offers its own advantages.

C. Asymptotic decay

In the following, we present the asymptotic behavior of
the distribution of diffusivities for homogeneous anisotropic
Brownian motion. We show how the anisotropy of the process
can be identified.

Considering a M-fold degeneracy of the largest diffusion
coefficient with D1 = · · · = DM > DM + 1 ≥ · · · ≥ DN the
distribution of diffusivities of the homogeneous anisotropic
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system is obtained from the convolution

pNd
D̂

(D) = {
pMd

D1/N
∗ p1d

D(M+1)/N
∗ · · · ∗ p1d

DN /N

}
(D), (17)

where pMd
D1/N

(D) is the distribution of diffusivities of the M-
dimensional isotropic system Eq. (7) with diffusion coeffi-
cient Dc = D1/N, which results from the convolution of M
identical one-dimensional distributions p1d

D1/N
(D).

For D � D1DM + 1/(D1 − DM + 1), an asymptotic expan-
sion for large D is performed and yields the asymptotic be-
havior of Eq. (17)

pNd
D̂

(D)
D→∞∼

(
N

2D1

)M
2 D

M
2 −1

�
(

M
2

)
× exp

(
− N

2D1
D

) N∏
j=M+1

√
D1

D1 − Dj

. (18)

Thus, the leading behavior in the logarithmic representation
is given by

log pNd
D̂

(D)
D→∞∼ − N

2D∞
D, (19)

with D∞ = max (D1, D2, . . . , DN), i.e., an exponential decay
involving the largest diffusion coefficient of the anisotropic
system.

In homogeneous isotropic systems D∞, which describes
the asymptotic decay, is equal to the isotropic diffusion
coefficient Dc, which further coincides with the first mo-
ment 〈D〉. The corresponding distribution of diffusivities is
a χ2-distribution given by Eq. (7). This is in contrast to
the anisotropic case, where 〈D〉 < D∞. Thus, a discrep-
ancy between 〈D〉 and D∞ leads to deviations from the
χ2-distribution and rules out a homogeneous isotropic pro-
cess. In general, this can be exploited to detect that the ob-
served system comprises more than one diffusion coefficient.
By further assuming homogeneity such a system is identified
as an anisotropic one.

A quantitative measure for the discrepancy between 〈D〉
and D∞ is given by

η = D∞
〈D〉 − 1 (20)

which characterizes the deviation from the homogeneous
isotropic case. Thus, for homogeneous systems it quantifies
the anisotropy of the process. In cases where both values coin-
cide, i.e., the system is isotropic, η becomes zero. In contrast,
if one diffusion coefficient is much larger than all others, 〈D〉
→ D∞/N resulting in η = N − 1, which denotes the largest
possible anisotropy in N dimensions. Thus, η is a measure
of the anisotropy, but it is not suitable to compare systems
of different dimensionality N. It should be noted that similar
measures exist.16, 43

From experimental data, both quantities for the
anisotropy measure Eq. (20) can be determined easily. The
mean diffusion coefficient 〈D〉 corresponds to the first mo-
ment of the distribution of diffusivities and is obtained
by averaging the diffusivities. The decay for large D is
obtained from a fit to f (D) = c exp(−λfitD) to calculate
D∞ = N/(2λfit). The actual dimensionality Neff of processes

observed in N ≥ Neff dimensions can be estimated with
Neff = 2〈D〉λfit leading to η = N/Neff − 1. For example, if an
observed N-dimensional motion yields the largest anisotropy
value of η = N − 1, the process is effectively a one-
dimensional motion.

D. Reconstruction of the diffusion tensor

For experiments, it is of great interest to reconstruct the
diffusion tensor D from measurements. If complete informa-
tion about the trajectories is available, the diffusion tensor of
the homogeneous anisotropic process can be estimated via the
displacements. By defining tensorial diffusivities analogously
to Eq. (4)

D
ij
t (τ ) = [xi(t + τ ) − xi(t)][xj (t + τ ) − xj (t)]

2τ
, (21)

where xi(t) denotes the ith component of the N-dimensional
trajectory x(t), the linear τ dependence of the mixed displace-
ments is removed. These tensorial diffusivities are simply
averaged

Dij = 〈
D

ij
t (τ )

〉
(22)

providing an estimator for the corresponding elements of D.
Here, 〈· · · 〉 either denotes a time average or an ensemble av-
erage depending on the available data.

IV. PROJECTION TO A M-DIMENSIONAL SUBSPACE

Due to experimental restrictions, the complete trajectory
is often not accessible but its projection on a M-dimensional
subspace can be measured. Such processes are commonly
known as observed diffusion.44, 45

The projection of the distribution of displacements
Eq. (3) on the considered subspace is the marginal probability
density

p(rM
α , τ ) =

∫
drα1 · · ·

∫
drαN−M

p(r, τ ), (23)

where rαi
, i = 1, . . . , (N − M) denotes (N − M) arbitrar-

ily chosen directions which are integrated out. The vector
α = (α1 · · · αN−M ) contains the indices αi describing which
elements of r are omitted. Alternatively, the projected distri-
bution of displacements is computed by the M-dimensional
inverse Fourier transform of the characteristic function
of p(r, τ ) where the components, kαi

= 0, ∀i ∈ {1, . . . ,

N − M}, which correspond to the chosen directions, are dis-
carded. Hence, the distribution of displacements of the sub-
space is

p
(
rM
α , τ

) =
∫

dMkM
α

1

(2π )M
exp

[−i
(
kM

α

)T
rM
α

]
G
(
kM

α

)
(24)

with the characteristic function of the projected propa-
gator G(kM

α ) = exp[−(kM
α )T�M

α kM
α ]. The vector kM

α is a
M-dimensional sub-vector of the complete k-space and �M

α

denotes a principal M × M submatrix of � obtained by dele-
tion of rows and columns with corresponding indices αi.

The distribution of diffusivities of such a projected
diffusion process is calculated analogously to Eq. (6) by
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integrating over rM
α . Since � = 2τD is a symmetric, posi-

tive definite matrix for τ > 0, all principal submatrices �M
α

are symmetric, positive definite matrices as well and can be
diagonalized. Hence, the projected distribution of diffusivi-
ties has the M-dimensional form of the generic expression
Eqs. (10), (13), or (16). However, it depends on the eigen-
values DM

k,α, k = 1, . . . ,M of the projected diffusion tensor
DM

α = �M
α /(2τ ). If the eigenvalues of D are identified as

D1 ≥ D2 ≥ · · · ≥ DN (25)

and the eigenvalues of DN−1

( α )
are

DN−1

1,( α )
≥ DN−1

2,( α )
≥ · · · ≥ DN−1

N−1,( α )
, ∀α ∈ {1, . . . , N},

(26)
the well-known interlacing inequalities46 require

Dk ≥ DN−1

k,( α )
≥ Dk+1, ∀k ∈ {1, . . . , N − 1} (27)

for all α ∈ {1, . . . , N}. This expression is applied recursively
(N−M) times to obtain a relation for the eigenvalues of the
principal M × M submatrix47

Dk ≥ DM
k,α ≥ Dk+N−M, ∀k ∈ {1, . . . ,M} (28)

for arbitrary α. By implication, if at least two eigenvalues
of the submatrix DM

α differ, i.e., the projected process is
anisotropic, Eq. (27) states recursively that the complete pro-
cess is anisotropic as well. Thus, the distribution of diffu-
sivities of the projected N-dimensional anisotropic Brownian
motion may already indicate the anisotropy of the complete
process as well as the magnitude of one of the involved diffu-
sion coefficients. However, a single projection is not sufficient
to obtain the underlying diffusion coefficients.

Nevertheless, it is possible to estimate the bounds of the
diffusion coefficients. The lower bound of the eigenvalues is
given by zero, due to the positive semidefiniteness of D. An
upper bound for the largest eigenvalue can be found if enough
projections or submatrices are available to comprise all diago-
nal elements of D. By use of the relation between the trace of
a N × N matrix A and its eigenvalues λi, tr A = ∑

i λi , subto-
tals of the trace of D are given by the sum of the eigenvalues
of the respective submatrices. If the non-overlapping orthog-
onal projections of D defined by α compose a partition of the
set {1, . . . , N}, the trace of the tensor is given by

tr D =
N∑

i=1

Di =
∑

α

tr DM
α =

∑
α

∑
k

DM
k,α (29)

with
⋃̇

α = {1, . . . , N}, where the partition elements α do
not necessarily have identical dimensionality.

For example, if one measures the eigenvalues of two non-
overlapping projections of a 3 × 3 diffusion tensor D, the
trace of D is given by

tr D = tr D1
(1 3) + tr D2

(2)

= D1
1,(1 3) + D2

1,(2) + D2
2,(2). (30)

Thus, the eigenvalue inequalities for that example using the
relations above are given by

tr D ≥D1 ≥ max
(
D1

1,(1 3),D
2
1,(2)

) ≥ D2

D2 ≥ min
(
D1

1,(1 3),D
2
2,(2)

) ≥ D3 ≥ 0, (31)

which allows a rough estimation of the diffusion coefficients
from the given projections.

V. SPECIFIC SYSTEMS

A. Two-dimensional systems

The distribution of diffusivities of a two-dimensional ho-
mogeneous anisotropic system can be calculated explicitly,
for instance, via Eq. (16), resulting in

p2d
D̂

(D) =
∞∫

0

d
1

∞∫
0

d
2 δ [D − (
1 + 
2)]

×p1d
D1/2(
1)p1d

D2/2(
2)

=
exp

[
− 1

2

(
1

D1
+ 1

D2

)
D
]

√
D1D2

I0

[
1

2

(
1

D1
− 1

D2

)
D

]
,

(32)

where I0(x) denotes the modified Bessel function of the first
kind. The first two moments of this distribution, as given by
Eq. (8), yield

〈D〉 = M1 = 1

2
(D1 + D2) (33)

and

〈D2〉 = M2 = 1

4

(
3D2

1 + 2D1D2 + 3D2
2

)
. (34)

Hence, the mean diffusion coefficient coincides with the arith-
metic mean of the diffusion coefficients belonging to the
two directions of the anisotropic system as expected from
Eq. (12). Solving the simultaneous Eqs. (33) and (34) yields
the expression

D1,2 = M1 ±
√

M2 − 2M2
1 (35)

to obtain the diffusion coefficients D1 and D2 from the
moments.

The asymptotic behavior of Eq. (32) for large D is given
by Eq. (18) and yields

p2d
D̂

(D)
D→∞∼

exp
(
− D

D∞

)
√|D1 − D2|πD

(36)

with D∞ = max (D1, D2). Thus, the asymptotic behavior in
the logarithmic representation is given by

log p2d
D̂

(D)
D→∞∼ − D

D∞
, (37)

which corresponds to the decay of the distribution of diffu-
sivities in two-dimensional homogeneous isotropic systems
with diffusion coefficient D∞, i.e., an exponential decay with
the largest diffusion coefficient of the anisotropic system.
Accordingly, the smallest diffusion coefficient is given by
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2〈D〉 − D∞. From the asymptotic decay and the mean diffu-
sion coefficient, the anisotropy of the system is characterized
by Eq. (20) and corresponds to the ratio

η = |D1 − D2|
D1 + D2

=
√

M2 − 2M2
1

M1
, (38)

which is also related to the moments.
The diffusion coefficients D1, D2 can also be obtained

from the asymptotic behavior for vanishing D. Since

lim
D→0

p2d
D̂

(D) = (D1D2)−
1
2 , (39)

the corresponding value in experimental data is determined by
extrapolating the distribution of diffusivities in a log-log plot
towards D = 0. In conjunction with an estimate of the largest
diffusion coefficient from a fit to Eq. (37), both diffusion co-
efficients can be identified. This provides a consistency check
for the calculation via the moments of the distribution of dif-
fusivities given in Eq. (38).

To substantiate our analytical expressions by results from
simulations, a random walk was performed by numerical inte-
gration of the Langevin equation, Eq. (2), in two dimensions
using the diffusion tensor

D =
(

4
√

3
√

3 2

)
(40)

with eigenvalues D1 = 5 and D2 = 1. The obtained trajec-
tory of the two-dimensional homogeneous anisotropic diffu-
sion process consisted of 105 displacements and its distribu-
tion of diffusivities is depicted in Fig. 1. The agreement of
the normalized histogram from simulated data with the an-
alytic distribution Eq. (32) is obvious. Deviations between
simulation and the analytic curve for large D are due to in-
sufficient statistics from the finite number of displacements.

p(
D

)

D

10-4

10-3

10-2

10-1

100

 0  5  10  15  20  25  30

FIG. 1. The distribution of diffusivities (histogram) from a simulated trajec-
tory of a homogeneous anisotropic diffusion process in two dimensions with
diffusion tensor D given by Eq. (40) agrees well with the analytic distribution
of diffusivities (solid line) from Eq. (32) with D1 = 5 and D2 = 1 denoting
the eigenvalues of D. Additionally, the asymptotic function Eq. (36) (dot-
ted line, D∞ = 5) agrees reasonably for large D. Furthermore, a distribution
of diffusivities (dashed line) of two-dimensional isotropic diffusion with the
same mean diffusion coefficient Dc = 〈D〉 = (D1 + D2)/2 = 3 is shown for
comparison. The different asymptotic decays are clearly visible and allow the
distinction from homogeneous isotropic processes.

Moreover, Fig. 1 shows the mono-exponential behavior cor-
responding to isotropic diffusion in two dimensions for com-
parison. Although the mean diffusion coefficients of both
processes coincide, the asymptotic decays of the distribu-
tions differ. The reason is the asymptotic behavior given by
Eq. (36) in the anisotropic case which decays exponentially
with the largest eigenvalue for large D as depicted in the fig-
ure. In contrast, for the isotropic system the asymptotic de-
cay corresponds to the mean diffusion coefficient resulting
in the observed quantitative difference. Furthermore, the dis-
tributions are qualitatively different for small D. A charac-
teristic difference between isotropic and anisotropic systems
is the convex shape in the logarithmic representation of the
anisotropic distribution of diffusivities. This intuitively results
from the two different exponential decays related to the dis-
tinct diffusion coefficients D1 and D2. In a more rigorous way,
since d2

dD2 log p2d
D̂

(D) ≥ 0, with the equal sign being valid only
for isotropic diffusion, the anisotropic distribution of diffusiv-
ities is a superconvex function.48

For experimental data, it is easy to calculate the first two
moments M1 and M2 by averaging the short-time diffusivi-
ties of Eq. (4) and their squares, respectively. The averaging
is accomplished either along a single trajectory or from an en-
semble of trajectories avoiding any numerical fit. The first two
moments are sufficient to calculate D1 and D2 by Eq. (35).

For the sample trajectory used in Fig. 1, the first two
moments are determined to be M̃1 = 2.987 and M̃2 = 21.72.
According to Eq. (35), the underlying diffusion coefficients
yield D̃1 = 4.956 and D̃2 = 1.018. These values agree well
with the eigenvalues of the tensor Eq. (40), which was used
as input parameter of the simulation. The resulting value of
η = 2/3 indicates a considerable anisotropy of the process.

1. Limiting cases

In the case of identical diffusion coefficients for both di-
rections, the anisotropy vanishes as discussed for Eq. (38).
The resulting isotropic diffusion process is characterized by a
single diffusion coefficient Dc = D1 = D2. Hence, Eq. (32)
simplifies to the well-known distribution of single-particle
diffusivities of two-dimensional isotropic diffusion19

p2d
Dc

(D) =
exp

(
− D

Dc

)
Dc

(41)

given by an exponential function.
If, on the contrary, the anisotropy is large, diffusion in

one direction will be suppressed. Without loss of generality,
this is accomplished by sending one of the diffusion coeffi-
cients to zero. Thus, by taking the limit of vanishing D2, the
distribution of diffusivities Eq. (32) is simplified to

p1d
D1

(D) = lim
D2→0

p2d
D̂

(D) =
exp

(
− D

D1

)
√

πD1D
, (42)

which has the structure of the distribution of diffusivities
of one-dimensional diffusion.19 Since diffusion into the per-
pendicular direction is prohibited, as expected, it qualita-
tively leads to the observation of a one-dimensional process.
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This can be identified by the characteristic factor D−1/2 due
to which the distribution of diffusivities diverges for small
D. Applying Eq. (8) the first moment of Eq. (42), i.e., the
mean diffusion coefficient, yields 〈D〉 = D1/2. The factor of
1/2 results from the single-particle diffusivities Eq. (4) with
N = 2 assuming that a two-dimensional process is observed.
However, due to the suppression of one direction this assump-
tion is no longer valid and N = 1 should have been used in-
stead. This conclusion is also obtained from the anisotropy
value η = 1, which is equal to its maximum value for
two-dimensional anisotropic processes since effectively one-
dimensional motion is observed.

2. Reconstruction of D

In addition to the eigenvalues, it is sometimes of interest
to determine the orientation of the principal axes of the system
relative to the given frame of reference. This is achieved by
the reconstruction of the diffusion tensor

D =
(

D11 D12

D12 D22

)
, (43)

where the off-diagonal elements are labeled identically due
to symmetry reasons. The reconstruction is accomplished in
two ways either by considering the complete two-dimensional
trajectory or by using one-dimensional projections of the
trajectory.

In the first approach, the tensorial diffusivities of Eq. (21)
are used to obtain the tensor entries of D. In accordance with
Eq. (22), the tensor elements are estimated by averaging the
tensorial diffusivities along a trajectory or over an ensemble.
Moreover, the eigenvalues of the tensor D are expressed by its
entries

D1,2 = 1

2

(
D11 + D22 ±

√
(D11 − D22)2 + 4D2

12

)
(44)

and correspond to the diffusion coefficients of the system.
For the sample trajectory used in Fig. 1, the measured

values D̃ij yield the diffusion tensor

D̃ =
(

3.983 1.719
1.719 1.990

)
, (45)

which agrees reasonably with the input parameters of the
simulation. The eigenvalues from this measured tensor
D̃1 = 4.973 and D̃2 = 1.000 show a good agreement with the
exact eigenvalues of the input tensor D1 = 5 and D2 = 1.

The second approach determines the tensor D exclusively
from one-dimensional projections of the trajectory. In order
to obtain results, at least three different projections are nec-
essary. For simplicity, it is preferable to use projections along
two perpendicular axes, which define the frame of reference
for D. Furthermore, a projection onto an axis is required
which is rotated about an angle θ relatively to the frame of ref-
erence. In such a setup, the first moments of the distribution
of diffusivities related to the first two projections are identical
to the averaged tensorial diffusivities 〈D11

t (τ )〉 and 〈D22
t (τ )〉.

Thus, they yield the two diagonal elements of D. The first
moment of the third projection measures the leading diago-
nal element Dθ

11 of the rotated tensor Dθ = R(θ )TDR(θ ) with

rotation tensor R(θ ) = ( cos θ − sin θ
sin θ cos θ

). This additional value is

sufficient to obtain the off-diagonal element of D from

D12 = Dθ
11 − D11 cos2 θ − D22 sin2 θ

sin(2θ )
. (46)

For the calculation, any projection of the trajectory onto an
arbitrary one-dimensional axis, i.e., any θ , can be used ex-
cept directions perpendicular or parallel to axes of the frame
of reference, i.e., angles θ which are multiples of π /2. It
should be emphasized that the reconstruction from the distri-
bution of diffusivities of projected trajectories is possible al-
though the definition of the diffusivities omit any directional
information.

In the example with D̃11 = 3.983, D̃22 = 1.990, and a
measured D̃

5π/12
11 = 2.983, the off-diagonal element yields

D12 = 1.719, which is in good agreement with the value√
3 ≈ 1.732 appearing as input parameter of the simulation.

In conclusion, it depends on the constraints of the exper-
iment which of both approaches is more practicable. In either
way, the complete diffusion tensor D is reconstructed reason-
ably well.

B. Three-dimensional systems

Analogous to the two-dimensional case, it is possible to
calculate the distribution of diffusivities for three-dimensional
systems either by inverse Fourier transform of the general
characteristic function Eq. (13) or by the convolution Eq. (16).
In both cases, the analytical integration cannot be performed
completely. However, the integration can be accomplished nu-
merically. By integrating two variables, Eq. (16) is reduced
to

p3d
D̂

(D) =
∞∫

0

d
1

∞∫
0

d
2

∞∫
0

d
3 δ [D − (
1 + 
2 + 
3)]

×p1d
D1/3(
1)p1d

D2/3(
2)p1d
D3/3(
3)

=
D∫

0

d
1

(
3

2

)3/2 1√
πD1D2D3
1

× exp

{
−3

4

[(
1

D2
+ 1

D3

)
(D − 
1) + 2
1

D1

]}

× I0

[
3

4

(
1

D3
− 1

D2

)
(D − 
1)

]
. (47)

For further simplification, a series expansion of the modified
Bessel function I0(x) can be applied, which allows performing
the last integration. However, this only results in a converging
sum, which cannot be simplified any further.

By using the general expression of the cumulants Eq. (14)
and the relation between cumulants and moments Eq. (15), the
first three moments of the distribution of diffusivities of three-
dimensional homogeneous anisotropic diffusion processes
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are

M1 = 1

3
(D1 + D2 + D3), (48)

M2 = 1

9

[
(D1 + D2 + D3)2 + 2

(
D2

1 + D2
2 + D2

3

)]
, (49)

and

M3 = 1

9

[
5D3

1 + 3D2
1(D2 + D3)

+D1
(
3D2

2 + 2D2D3 + 3D2
3

)
+ (D2 + D3)

(
5D2

2 − 2D2D3 + 5D2
3

)]
. (50)

These expressions are similar to Eqs. (33) and (34) and relate
the moments of the distribution of diffusivities to diffusion
coefficients D1 to D3 of the anisotropic process. By solving
simultaneously Eqs. (48)–(50), the underlying diffusion coef-
ficients are determined by the measured moments of the distri-
bution. The solution comprises six triplets (D1 to D3), which
are permutations of the three diffusion coefficients. Due to
the cubic contributions in Eq. (50), the expressions are too
lengthy to be shown here but can be easily obtained, for in-
stance, using symbolic computer algebra systems.

The asymptotic behavior of Eq. (47) for large D is given
by Eq. (18), which assumes D1 > D2 > D3, and results in

p3d
D̂

(D)
D→∞∼

√
3D1 exp

(
− 3D

2D1

)
√

2π (D1 − D2)(D1 − D3)D
. (51)

Thus, the behavior in the logarithmic representation is deter-
mined by

log p3d
D̂

(D)
D→∞∼ − 3D

2D∞
, (52)

which corresponds to the asymptotic decay of a three-
dimensional isotropic distribution of diffusivities with
D∞ = max (D1, D2, D3). The anisotropy measure Eq. (20)
in the three-dimensional case corresponds to

η = (D∞ − D1) + (D∞ − D2) + (D∞ − D3)

D1 + D2 + D3
, (53)

which considers the differences of the individual diffusion co-
efficients to characterize the anisotropy. It is obvious that the
largest anisotropy yields η = 2.

In order to substantiate our results by simulated data, the
simulation of a three-dimensional homogeneous anisotropic
random walk was performed using the diffusion tensor

D =

⎛
⎜⎜⎜⎝

4 −
√

3
2 − 1

2

−
√

3
2

13
4

3
√

3
4

− 1
2

3
√

3
4

7
4

⎞
⎟⎟⎟⎠. (54)

The obtained trajectory consists of 105 displacements and its
distribution of diffusivities is depicted in Fig. 2. The distri-
bution of diffusivities from the simulated trajectory shows a
good agreement with the curve obtained from numerical inte-
gration of Eq. (47). The deviations for larger values of D result
from the finite simulation time, i.e., its insufficient statistics.
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FIG. 2. The distribution of diffusivities (histogram) from one simulated tra-
jectory of a homogeneous anisotropic diffusion process in three dimensions
with diffusion tensor D given by Eq. (54) agrees well with the distribution of
diffusivities (solid line) obtained from numerical integration of Eq. (47), us-
ing the eigenvalues D1 = 5, D2 = 3, and D3 = 1 of tensor D. For comparison,
the distribution of diffusivities (dashed line) of an isotropic diffusion process
in three dimensions, given by Eq. (55), is shown, where the same mean dif-
fusion coefficient Dc = 〈D〉 = (D1 + D2 + D3)/3 = 3 as in the anisotropic
process was used. The different asymptotic decays are clearly visible and al-
low the distinction from homogeneous isotropic processes. In the inset, the
asymptotic function Eq. (51) (dotted line) agrees reasonably for large D.

Furthermore, Fig. 2 shows the distribution of an isotropic sys-
tem where a qualitative distinction at the crossover from the
maximum peak to the exponential decay becomes apparent.
This behavior of the curvature in the logarithmic represen-
tation depends on the observed system and is discussed in
Sec. V B 2. The deviating asymptotic decay of the anisotropic
process is clearly visible in Fig. 2 and allows the distinction
from homogeneous isotropic processes. Thus, in conjunction
with the mean diffusivity the asymptotic decay provides a
measure of the anisotropy. In addition, the asymptotic behav-
ior given by Eq. (51) is depicted and provides a reasonable
approximation for large D. The eigenvalues of D for exper-
imental data are easily determined by measuring the lead-
ing moments of the diffusivities. For the sample trajectory
used in Fig. 2, the first three moments result in M̃1 = 2.995,
M̃2 = 16.68, and M̃3 = 140.2. By solving the simultaneous
Eqs. (48)–(50), the underlying diffusion coefficients are ob-
tained as D̃1 = 4.884, D̃2 = 3.153, and D̃3 = 0.948. These
values agree reasonably well with the eigenvalues of the ten-
sor Eq. (54), which was used as input parameter of the simula-
tion. The value of η = 2/3 indicates a considerable anisotropy
of the process.

1. Limiting cases

If the diffusion coefficients of all three directions coin-
cide with Dc = D1 = D2 = D3, the distribution of diffusivities
for the three-dimensional isotropic system19

p3d
Dc

(D) = 3

√
3

2π

D

D3
c

exp

(
− 3D

2Dc

)
(55)

will be obtained from Eq. (47) in agreement with Eq. (7).
If exactly two diffusion coefficients coincide, one usu-

ally refers to diffusion processes of uniaxial molecules.35 In
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this case, the general distribution of diffusivities of three-
dimensional homogeneous anisotropic diffusion Eq. (47) sim-
plifies to

p3d
uni(D) = 3

2

exp
(− 3D

2D(2)

)
erf

(√
3
2

(
1

D(1) − 1
D(2)

)
D
)

√
D(2)(D(2) − D(1))

, (56)

where D(1) and D(2) are the eigenvalues of D with multiplic-
ity one and two, respectively. In general, a distinction be-
tween the oblate case (D(2) > D(1), disc) and the prolate case
(D(2) < D(1), rod) is made for uniaxial molecules. In the pro-
late case, both square roots in Eq. (56) yield complex num-
bers. However, with erf(

√−x)/
√−y = erfi(

√
x)/

√
y for x, y

> 0 and x, y ∈ R, Eq. (56) remains a real-valued function.
Hence, a distinction between the two cases for the diffusion
coefficients is not required for the distribution of diffusivities.

In the uniaxial case, the first three moments simplify to

M1 = 1

3
(D(1) + 2D(2)), (57)

M2 = 1

9

(
3D(1)2 + 4D(1)D(2) + 8D(2)2)

, (58)

and

M3 = 1

9

(
5D(1)3 + 6D(1)2

D(2) + 8D(1)D(2)2 + 16D(2)3)
.

(59)
Thus, the eigenvalues of D are calculated by

D(1) = M1 ∓
√

3M2 − 5M2
1 (60)

and

D(2) = M1 ± 1

2

√
3M2 − 5M2

1 , (61)

where the sign in the equations depends on the constraint of
positive diffusion coefficients. None of the eigenvalues will
become complex since with Eqs. (57) and (58) the expression
under the square root 3M2 − 5M2

1 = 4
9 (D(1) − D(2))2 > 0 is

always positive and, hence, M2 > 5
3M2

1 . It should be noted
that for 5

3M2
1 < M2 < 2M2

1 both signs in Eqs. (60) and (61)
yield positive diffusion coefficients. In this case, the third mo-
ment has to be exploited in order to decide the correct pair
of diffusion coefficients by comparing Eq. (59) with the mea-
sured value. Hence, there exist distributions of diffusivities
with identical moments M1 and M2, which result from differ-
ent diffusion coefficients. In this case, the distinct M3 deter-
mines the corresponding diffusion coefficients of the system.
In the limit M2 → 5

3M2
1 , D(1) and D(2) approach each other.

In this particular case, the decision for the correct pair cannot
be made accurately since both pairs yield approximately the
same M3 from Eq. (59). However, this limit corresponds to the
isotropic system and, hence, the single diffusion coefficient is
directly given by the first moment of the distribution.

Fig. 3 depicts examples of such distributions for the gen-
eral anisotropic, the prolate, and the oblate case. The differ-
ences can be identified qualitatively. In the general and in the
prolate case, the decay after the maximum peak has a con-
vex curvature in the logarithmic representation, whereas in the
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FIG. 3. Distribution of diffusivities (lines with open symbols) of different
homogeneous anisotropic diffusion processes in three dimensions. A qualita-
tive distinction between the oblate case (♦; D(1) = 1, D(2) = 5), the prolate
case (�; D(1) = 5, D(2) = 1), and a general anisotropic case (©; D1 = 5, D2
= 3, D3 = 1) is possible since the decay after the maximum peak shows a
concave curvature in the first case and a convex curvature in the latter cases.
The inset shows that each anisotropic case obeys the same asymptotic de-
cay given by the largest diffusion coefficient (dotted line as a guide to the
eye). For comparison, the isotropic case with the same asymptotic decay (�;
Dc = 5) is given, which always has a concave shape. Thus, it is qualitatively
indistinguishable from the oblate case. However, a comparison of the first
moment with the asymptotic decay offers a simple distinction between both
cases.

oblate case it decays in a purely concave manner. This quali-
tative change is obtained from d2

dD2 log p3d
uni(D) and discussed

in Sec. V B 2. In all cases, the exponential decay for large D
is determined by the largest diffusion coefficient as given by
Eq. (51). However, since the first decay after the peak is domi-
nated by the smallest diffusion coefficient, the curve is shifted
to the left for the prolate case in contrast to the oblate case
when D2 is changed from D3 to D1. As expected from the
first moment, the general case lies in between. A better dis-
tinction between the different cases is achieved quantitatively
by determining the moments and calculating the diffusion
coefficients.

In Fig. 4, the distribution of diffusivities for different
ratios

r = D(1)/D(2) (62)

is shown, ranging from oblate cases (r < 1) to prolate cases.
It can be seen that in the limit D(1) → 0 and, thus, r → 0,
the distribution converges to the two-dimensional isotropic
case with Dc = 2/3D(2). For r → 1, the distribution con-
verges to the three-dimensional isotropic case. In the prolate
cases, the distribution separates significantly from the three-
dimensional isotropic case for increasing r. For further in-
creasing ratios (r → ∞), the distribution converges to the
one-dimensional isotropic case with Dc = 1/3D(1). In con-
trast, the oblate cases converge rapidly to the two-dimensional
isotropic case for decreasing r. A qualitative distinction may
only be possible for small D, where the distribution still de-
viates from the mono-exponential behavior of the isotropic
system. However, quantitatively the anisotropy is character-
ized by Eq. (20), which results in η = 1−r

2+r
and η = 2(r−1)

2+r

for oblate and prolate cases, respectively. Thus, in the oblate
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FIG. 4. Distribution of diffusivities (lines with open symbols) for different
ratios r given by Eq. (62) and fixed D(2) = 1. The crossover from oblate cases
(r < 1, solid lines) to prolate cases (r > 1, dashed lines) shows a broadening
of the peak for increasing ratios. Again, the behavior after the peak changes
from concave to convex, respectively. For comparison, the distribution of dif-
fusivities of the limiting isotropic cases are depicted for two-dimensional (�;
Dc = 2/3) and three-dimensional processes (�; Dc = 1). The distinction of
prolate cases from the isotropic limits is simpler than for the oblate cases.

case the largest possible anisotropy emerges at small r, which
yields η = 1/2 and clearly indicates the anisotropy. In the pro-
late case, the largest anisotropy will be obtained, if only one
direction is preferred. Then, the anisotropy measure η = 2 is
maximal, which corresponds to one-dimensional motion in a
three-dimensional system.

2. Curvature of the distribution of diffusivities

As noticed in Fig. 3, the convex or concave curvature of
the probability density in the logarithmic representation de-
pends on the observed system and, thus, on the structure of
the diffusion tensor. In the literature, such a concave curva-
ture is known as log-concavity of functions which is a com-
mon property of probability distributions and has been studied
extensively.49–51 However, in the case of log-convex functions
there are much less properties known. In the following, we
discuss the curvature of the distribution of diffusivities in the
logarithmic representation, which can be exploited to deter-
mine characteristic properties of the observed processes.

For anisotropic processes, the asymptotic curvature of the
distribution of diffusivities in the logarithmic representation is
obtained from the uniaxial case Eq. (56) since Eq. (47) does
not provide a closed-form expression. For isotropic diffusion,
the curvature of the distribution of diffusivities is determined
from Eq. (55).

The asymptotic expansion of the second derivative for
small D yields

d2

dD2
log p3d

D̂
(D)

D→0∼ −1/(2D2), (63)

which coincides with the curvature of three-dimensional
isotropic systems. Analogously, we perform the asymptotic

expansion of the second derivative for large D

d2

dD2
log p3d

D̂
(D)

D→∞∼

⎧⎪⎪⎨
⎪⎪⎩

1/(2D2) D1 > D2 = D3,

− a3/2√
πD

exp(−aD) D1 = D2 > D3,

−1/(2D2) D1 = D2 = D3,

(64)

with positive a = 3/2(1/D(1) − 1/D(2)). The different results
depend on the multiplicity of the largest eigenvalue for pro-
late, oblate, and isotropic cases, respectively. In the general
anisotropic case with D1 �= D2 �= D3, the system is dominated
by the largest diffusion coefficient for large D. Hence, in this
case the asymptotic curvature is identical to the prolate case
(D1 > D2 = D3) and can also be obtained from Eq. (18). As
expected, a degeneracy of the smaller eigenvalues does not
contribute to the asymptotic curvature. Hence, in all systems
where the largest eigenvalue is not degenerated, for instance,
in anisotropic two-dimensional and also one-dimensional sys-
tems, we obtain the same behavior for large D, which is gov-
erned by the largest eigenvalue of the system.

The curvature of the distribution of diffusivities in the
logarithmic representation for small D is always concave as
given by Eq. (63). However, for large D it depends on the
observed system showing either a convex or a concave behav-
ior as given in Eq. (64). Hence, the sign of the curvature can
change with D. In the prolate case, the corresponding point of
inflection is found to be approximately at 1.504D(1)D(2)/(D(1)

− D(2)) by numerical evaluation of the root of d2

dD2 log p3d
D̂

(D).
For anisotropic systems, only in the oblate case the curva-
ture does not change its sign and the distribution is a log-
concave function. If the anisotropy measure becomes zero and
the distribution is a log-concave function, a three-dimensional
isotropic diffusion process is observed. This qualitative dif-
ference in the curvature of distributions with the same asymp-
totic decay can clearly be identified in Fig. 3.

Furthermore, it is interesting to note in Eq. (64) that in the
oblate case, where the largest eigenvalue exhibits a twofold
degeneracy, the asymptotic behavior of the curvature still de-
pends on the diffusion coefficients of the system. In all other
cases, the dependence on the diffusion coefficients vanishes.

As noted above, for two-dimensional anisotropic pro-
cesses the asymptotic behavior for large D in the loga-
rithmic representation is identical to the prolate case in
Eq. (64). However, the asymptotic behavior for small D is
given by 1/8(1/D1 − 1/D2)2 and clearly differs from that of
the three-dimensional process. Since the sign of the curva-
ture does not change with D the curvature is always convex
in two-dimensional anisotropic systems. However, for two-
dimensional isotropic systems the distribution of diffusivi-
ties in the logarithmic representation is just a straight line for
all D.

3. Reconstruction of D

As discussed for two-dimensional processes, the diffu-
sion tensor will be easily obtained by measuring the averaged
tensorial diffusivities according to Eq. (22) if the complete
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three-dimensional trajectory of the homogeneous anisotropic
process is available. For the sample trajectory used in Fig. 2,
the measured values D̃ij yield the diffusion tensor

D̃ =

⎛
⎜⎜⎝

3.994 −0.862 −0.492

−0.862 3.233 1.296

−0.492 1.296 1.758

⎞
⎟⎟⎠, (65)

which agrees reasonably with the input parameters of the
simulation Eq. (54). Further, the eigenvalues from this mea-
sured tensor D̃1 = 4.983, D̃2 = 2.998, and D̃3 = 1.004 show
a good agreement with the exact eigenvalues of the input ten-
sor D1 = 5, D2 = 3, and D3 = 1.

However, if only a projection of the complete trajectory
is available, e.g., from SPT, only the properties of the re-
spective submatrix of D can be measured. For instance, if the
two-dimensional projection onto the x-y-plane of the sample
trajectory is available, the first two moments of the distribu-
tion of diffusivities are determined to be M̃1,z = 3.613 and
M̃2,z = 26.95. Using Eq. (35), the eigenvalues of the prin-
cipal submatrix D2

z are computed to be D̃2
1,z = 4.531 and

D̃2
2,z = 2.695. Hence, the eigenvalue inequalities of Eq. (27)

provide the estimate

D1 ≥ D̃2
1,z = 4.531 ≥ D2 ≥ D̃2

2,z = 2.695 ≥ D3 ≥ 0 (66)

of the diffusion coefficients. As explained in Sec. IV, any
further observed projection improves the estimates of the
eigenvalues of D. An additional projection onto the x-z-
plane, for instance, yields the moments M̃1,y = 2.876 and
M̃2,y = 18.00 resulting in the eigenvalues D̃2

1,y = 4.083 and

D̃2
2,y = 1.668. Since with two orthogonal two-dimensional

projections of the three-dimensional process all diagonal el-
ements of D are available, an upper bound for the largest
eigenvalue is found to be D1 ≤ tr D ≤ D̃2

1,z + D̃2
2,z + D̃2

1,y

+ D̃2
2,y = 12.977. Hence, the eigenvalue inequalities yield

12.977 ≥ D1 ≥ max
(
D̃2

1,z, D̃
2
1,y

)= 4.531,

min
(
D̃2

1,z, D̃
2
1,y

) = 4.083 ≥ D2 ≥ max
(
D̃2

2,z, D̃
2
2,y

)= 2.695,

min
(
D̃2

2,z, D̃
2
2,y

) = 1.668 ≥ D3 ≥ 0. (67)

If additionally the projection onto the y-z-plane is avail-
able, the eigenvalues of D are estimated more precisely sim-
ilar to the previous steps. To improve the upper bound of
D1, the trace of D is calculated from all these eigenval-
ues by tr D = 1

2 (D̃2
1,x + D̃2

2,x + D̃2
1,y + D̃2

2,y + D̃2
1,z + D̃2

2,z),
where the prefactor arises from the overlapping diagonal ele-
ments of the submatrices.

In the case of availability of all orthogonal two-
dimensional projections of the process, the tensorial diffusiv-
ities offer an advanced approach to determine the diffusion
tensor. Since their first moments yield the entries of the prin-
cipal submatrices D2

x , D2
y , and D2

z , the underlying diffusion
tensor D is completely defined.

To summarize, the experimental setup influences the
available data and affects how many parameters of the un-
derlying process can be restored. A single two-dimensional
projection may already hint at the anisotropy of the process.
However, it is not sufficient to give an upper bound for the

largest eigenvalue. An additional orthogonal two-dimensional
projection or even a one-dimensional projection in the miss-
ing direction determines this upper bound and narrows the
ranges of the eigenvalues. For a reconstruction of the com-
plete tensor, either the complete trajectory or three orthogonal
two-dimensional projections of the process are necessary.

VI. CONCLUSIONS

To investigate N-dimensional homogeneous anisotropic
Brownian motion, we applied the distribution of diffusivities
as, e.g., obtained from single-particle tracking data. We in-
troduced an anisotropy measure depending on the asymptotic
decay of the distribution and the mean of the diffusivities,
which both are easily determined from experimental data. In
general, if this anisotropy measure is larger than zero, the dis-
tribution deviates from the χ2-distribution, which we obtain
for homogeneous isotropic diffusion. Thus, the observed pro-
cess involves more than one diffusion coefficient attributed to
an inhomogeneity or an anisotropy of the system. For homo-
geneous processes, we concluded that those systems have to
be anisotropic. Furthermore, from the general expression of
the distribution of diffusivities we derived relations between
its moments or cumulants and the eigenvalues of the diffu-
sion tensor D. Since, due to experimental restrictions, often
only projections of the trajectories are observed we further
discussed the consequences and provided an estimate for the
bounds of the involved diffusion coefficients.

After our general considerations, we applied the results to
specific systems with high relevance to experiments. In partic-
ular, we investigated two-dimensional and three-dimensional
systems as well as uniaxial molecules in three dimensions. In
a two-dimensional homogeneous anisotropic system, the dis-
tribution of diffusivities comprises a modified Bessel func-
tion and allows a qualitative distinction from the mono-
exponential decay observed in isotropic systems. Moreover,
the first two moments of the distribution are sufficient to cal-
culate the diffusion coefficients corresponding to the principal
axes. Even the orientation of the principal axes and, thus, the
complete diffusion tensor D can be determined by using ten-
sorial diffusivities or three one-dimensional projections of the
trajectory. For three-dimensional processes, the general ex-
pression of the distribution of diffusivities is more elaborated
and one integration has to be evaluated numerically. However,
we expressed the first three moments in terms of the diffu-
sion coefficients belonging to the principal axes. Conversely,
these expressions offer a method to calculate the diffusion co-
efficients from the moments measured in experiments, where
other analysis fails. It is further shown that the isotropic and
anisotropic systems differ in the logarithmic representation
of the distribution of diffusivities, i.e., the asymptotic decay
rate is proportional to the inverse slope of the msd and to
the inverse of the largest diffusion coefficient, respectively.
Thus, the distribution of diffusivities for anisotropic diffusion
asymptotically decays slower than for isotropic diffusion with
the same mean diffusion coefficient. The deviation between
the asymptotic decay and the first moment provides a suit-
able measure for the anisotropy of the process. For uniaxial
molecules diffusing in three dimensions, the third integration
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was accomplished and the resulting distribution of diffusivi-
ties involves an error function. In this case, the diffusion co-
efficients along the direction of the principal axes depend on
the first two moments of the distribution. For different ratios
of the diffusion coefficients, we distinguish between oblate
and prolate cases, which show a concave and a convex cur-
vature in the logarithmic representation, respectively. Finally,
we offer a guide to quantify the eigenvalues of D from pro-
jected observations and to reconstruct the diffusion tensor in
three dimensions from the moments of the tensorial diffusiv-
ities. The reconstruction from projected observations is pos-
sible although any directional information is discarded when
determining the distribution of diffusivities.

In summary, the distribution of diffusivities provides an
advanced analysis of anisotropic diffusion processes. The dis-
tribution is easily obtained from measured trajectories or from
ensemble measurements such as NMR and allows for a char-
acterization of the processes. For homogeneous diffusion pro-
cesses, this distribution is stationary, which allows us to com-
pare experiments conducted on different time scales. The first
moment of the distribution corresponds to the mean of the
diffusivities and coincides with the slope of the mean squared
displacement. From the discrepancy between the asymptotic
decay of the distribution and the mean of the diffusivities, it
is easy to identify systems which are not sufficiently charac-
terized by a single diffusion coefficient. Hence, we encourage
experimentalists to determine these simple quantities in or-
der to detect a discrepancy and to verify their assumptions
about homogeneous isotropic processes. Furthermore, if the
system is homogeneous and anisotropic, the diffusion coeffi-
cients can be reconstructed from the moments of the distribu-
tion. Beyond that, the concept of diffusivities as scaled dis-
placements is extended to tensorial diffusivities, which allow
the reconstruction of the diffusion tensor from their first mo-
ments. Hence, the distribution of diffusivities complements
well-established methods, such as investigating mean squared
displacements, for the analysis of diffusion data.

In future publications, we will address the distinction
between anisotropic and heterogeneous diffusion processes,
which also involve more than one diffusion coefficient. The
more general case of heterogeneous anisotropic diffusion may
also be of interest for applications. This case requires the
combination of our previous results for time-heterogenous
processes19 with the results presented here. Furthermore,
since the eigenvalues of the tensor D are invariant to orthog-
onal transformations, we will apply our distribution of dif-
fusivities to systems where the diffusion tensor changes its
orientation in space and time, such as diffusion of ellipsoidal
particles in isotropic media and diffusion in liquid crystalline
systems with an inhomogeneous director field.
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